

Groundbreaking Performance

Qui nous sommes. Nos activités.

Les utilisateurs d'explosifs des industries minières, de carrières, de la construction, des pipelines et de l'exploration géophysique savent que Dyno Nobel – un chef de file mondial des explosifs commerciaux – offre un rendement exceptionnel par le truchement d'innovations pratiques en se fondant essentiellement sur la sécurité et l'amélioration continue.

Alfred Nobel, notre fondateur, a changé le monde en inventant la dynamite et le détonateur dans les années 1860. Il l'a changé à nouveau lorsqu'il a fondé les Prix Nobel dont la renommée mondiale n'est plus à faire. Les racines de Dyno Nobel sont également composées de l'invention de William Bickford, en 1931, du fusible de sûreté. L'historique de l'entreprise repose sur cet héritage de sécurité et d'innovation

Fort de notre objectif de Zéro dommage, autant pour nos employés, nos clients que l'environnement, nos normes en matière de sécurité comptent parmi les plus élevées de l'industrie Nous mettons en application de façon rigoureuse des normes de sécurité reconnues à l'échelle internationale sur tous nos sites et dans toutes nos activités, depuis l'entreposage jusqu'au transport, en passant par la manutention et l'utilisation de nos produit

Conjointement avec nos nouveaux propriétaires, Incitec Pivot Limited, nous sommes une force Conjointernent avec nos nouveaux proprietaires, incliec Prot Limitieu, nous sontines une force mondiale en fait de production de produits chimiques à base d'azote, nous positionnant ainsi à l'avant-plan sur les marchés des explosifs et des engrais. L'entreprise d'explosifs d'Incitec Pivot continuera d'être identifiée par la marque bien connue de Dyno Nobel pendant que nous veillerons à nous occuper de nos clients qui nécessitent des explosifs des secteurs que nous servons.

Coordonnées

Dyno Nobel – Siège social mondial 2795 East Cottonwood Parkway, Suite 500, Salt Lake City, Utah 84121 USA Téléphone : 800-732-7534 Téléc. : 801-321-6706

site Web: www.dynonobel.com e-mail: explosivesengineerguide@am.dynonobel.com

Avis de non-responsabilité

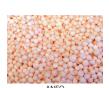
Il nous est impossible de prévoir toutes les conditions dans lesquelles la présente information et nos produits, ou les produits d'autres fabricants en combinaisons avec les nôtres, seront utilisés. Nous n'assumons aucune responsabilité quant aux résultats obtenus par la mise en application de la présente information ou relativement à la sécurité ou la pertinence de nos produits, utilisés seuls ou jurnelés à d'autres produits. Les utilisateurs sont avisés d'effectuer leurs propres essais afin de déterminer le degré de sécurité et de pertinence de chaque produit ou combinaison de produits à leurs propres fins. degré de sécurité et de pertinence de chaque produit ou combinaison de produits à leurs propres fins. Dyno Nobel Inc. et ses filiales s'exonèrent de toutes garanties expresses ou implicites concernant ses produits, leur sécurité ou leur pertinence, de l'information contenue aux présentes ou des résultats qui en découleraient, Y COMPRISS SANS TOUTEFOIS Y ÊTRE LIMITÉ, TOUTE GARANTIE IMPLICITE DE QUALITÉ MARCHANDE OU D'ADAPTATION À TOUT USAGE PARTICULIER ET/OU TOUTE AUTRE GARANTIE. Les acheteurs et les utilisateurs assument tous les risques, responsabilités et obligations de quelque nature que ce soit pour toute blessure (y compris un décès), pertes ou dommages, tant pour les personnes que pour les biens, découlant de l'utilisation de ces produits. En aucun cas Dyno Nobel Inc. ou ses filiales ne seront tenues responsables de dommages spéciaux, indirects ou accessoires ou de pertes de profits escomptées.

- Y a-t-il quelque chose de différent?
- Y a-t-il querque chose de different?
 Y a-t-il eu des changements depuis la dernière fois que vous avez effectué cette tâche?
 Si oui, prenez un Take 5! (minutes) pour effectuer les Take 5! (étapes)

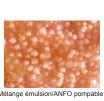
Déterminez la tâche que vous vous apprêter à accomplir

Divisez la tâche à accomplir en étapes et déterminez les dangers que comporte chaque étape

Évaluez les dangers en fonction de l'outil d'évaluation des dangers



Élaborez des CONTRÔLES et appliquezles aux DANGERS



Consignez les CONTRÔLES

TAKE 5! Évaluation rapide des dangers

Ex

Pourcentage Émulsion

DY • Sa

TITAN 1060 G

TITAN 1050 G

TITAN 1000 SD

TITAN 1080 SD

TITAN 1070 SD

TITAN 1050 SD

TITAN 1030 SD

TITAN 1020 SD

TITAN 1000 LD

TITAN 1070 LD

TITAN 1050 LD

TITAN 1040 LD

TITAN 1030 LD

60 1,20 4 / 100

50 1,25 6 / 150

100 1,20

80 1,23 3½/90

70 1,24 4 / 100

50 1.27 5 / 125

30

20

100 1.25 3½/90

70

50 1,30 6 / 150

40

1,15 5 / 125

						-			
Émulsion TITA			Émulsion ⁻	TITAN LI	ATIT \ C	N SD	Éı	mulsion TI	TAN 70
cplosifs e	en vra	ac							
	Pourcentage Émulsion	Moyenne Densité g/cc	Minimum Diamètre in/mm	Énergie cal/g (PVA)	Énergie cal/cc (PMB)	Vélocité pi/sec	Vélocité m/sec	Eau Résistance	Chargem Méthod P=Pomp T=Tarièr
/NOMIX™ (ANF ac de 50 lb vers	,	0,82	21/4 / 57	880	720	11 800	3 597	Aucun	-

Émulsion TITAN 7000 RU Vélocité Eau Chargement Code m/sec Résistance Méthode d'utilisati P=Pompe T=Tarière

S.ST

			- , -								-,-
	• par tarière	0	0,86	4½ / 115	880	755	12 800	3 901	Aucun	Τ	S,ST
	pneumatique	0	0,93	11/4 / 32	881	837	10 700	3 261	Aucun	-	S,ST
	FRAGMAX®	0	1,05	4½ / 115	880	925	15 600	4 750	Aucun	Τ	S
	TITAN 7000 RU	100	1,20	13/4 / 45	690	830	18 000	5 500	Excellent	Р	R,ST
	TITAN 7000 RUS	100	1,22	3 / 75	670	840	17 100	5 200	Excellent	Р	R,ST
	TITAN 7000 RUSC	100	1,22	2½/65	670	820	17 100	5 200	Excellent	Р	R,S
	TITAN 7000 RU-A	100	1,20	13/4 / 45	690	830	18 000	5 500	Excellent	Р	R,ST,C
	TITAN 7000 RU-SX	100	1,20	13/4 / 45	680	815	18 000	5 500	Excellent	Р	R,ST,SO
	La série TITAN 7000 RU	a été co	onçue p	our servir ur	niqueme	ent avec	le système	e de char	gement Dyno	Mine	er [®]
_											
	TITAN 1050	50	1,32	8 / 200	780	1 030	16 400	5 000	Bonne	Т	S,R
	TITAN 1040	40	1,25	6 / 150	800		15 800	4 800	Moyen	T	S,R
	TITAN 1030	30	1.15	5 / 125	820	945	15 300	4 700	Faible	T	S,R
	TITAN 1025	25	1,10	4 / 100	830	915	15 000	4 600	Faible	T	S,R
			,								
	TITAN 1000 G	100	1,20	2½/65	680	815	14 800	4 500	Excellent	P	S,G
	TITAN 1070 G	70	1,20	3 / 75	740	890	14 100	4 300	Excellent	Ρ	S,G

760 910

780 975

680 815

720 885

740 920

771 980

815 935

835

680 850

740 955

780

800

820 945

3/75

1,15 4½ / 115

1,05 3½/90

1,29 4½ / 115

5 / 125 1,25

13 500 4 100

14 100 4 300

18 400 5 600

17 700 5 400

15 700 4 800

15 400 4 700

14 400 4 400

19 000 5 800

18 500 5 600

15 300 4 700

880 13 800 4 200

1 015 17 700 5 400

1 000 16 400 5 000

Excellent P

Bonne

Excellent Р S,R

Excellent Р S,R

Bonne Т S,R

Moyen Т S.R

Faible Т

Excellent Ρ

Excellent Ρ S,R

Bonne Т S,R

Moyen

Faible Р

Excellent Р S,R

S,G

S,G

S,R

S.R

S,R S,R

S,G

S,G,SM

THAN AL 1000	100	1,20	2/2/00	000	010	17 100	5 200	Excellent	Р
TITAN SME™	100	1,20	21/2 / 65	680	815	17 100	5 200	Excellent	Р
Codes d'utilisation	S = Dynam	itage de	e surface	ST = Dyr	namitage	e souterrai	n R= f	Repompable	
014 14/1 /		1.01	/:C 11	00		9.1		10 /	

SM = Mélangé au site G = Gazéifié ou gazéifiable SO = Compatible avec minerai sulfuré

Puissance volumique (PV) et Puissance massique (PM) peuvent être calculées en fonction de l'ANFO = 1,00 @ densité de 0.82 g/cc Énergie cal/g = Puissance volumétrique absolue (PVA) Énergie cal/cc = Puissance au mortier balistique (PMB)

TROJAN®GEOPRIME®dBX

TROJAN®GEOPRIME®

VIBROGEL®

Émulsion

DYNO[®] AP

DYNOMIX™

DYNOMIX WR

1,76

1.65

1,43

1,15

1½ à 2¼

21/4

1¼ à 2¼

1 à 3

2 100 14,7

1 600 23,2

1 247 26,0

24 250

23 950

20 000

15 400

7 400

7 300

6 100

3 900

3 460

236

220

133

4 700 Excellent D,G,ST

A.G.ST

A,G,ST

Aucun

Limitée

D.SS

D,SS

D.SS

21110 711	.,			000	.0 .00			٥,٥,٥١
DYNO AP PLUS	1,15	1 à 3	860	990	15 100	4 600	Excellent	D,G,ST
DYNO SL	1,15	1 à 1½	770	885	15 400	4 700	Excellent	D,CS,ST
DYNO SL PLUS	1,15	1 à 1½	850	980	15 100	4 600	Excellent	D,CS,ST
DYNOSPLIT® AP	1,08	1 à 1½	775	840	15 400	4 700	Excellent	D,P,ST
DYNOSPLIT® C	1,20	% à 2	800	960	23 000	7 000	Excellent	D,P,ST
DYNOSPLIT® RIGHT ¹¹	4 1,11	1 à 2	775	860	16 100	4 900	Excellent	D,P,ST
DYNO E-5	1,05	1¼ à 1½	740	777	14 800	4 500	Excellent	D,ST,A
DYNO TX (tube)	1,17	1½ à 3½	1 000	1 170	16 400	5 000	Excellent	D,R,ST
DYNO TX (papier)	1,10	2 à 3	985	1 085	16 400	5 000	Excellent	D,R,ST
BLASTEX [®]	1,26	2 à 8	740	930	16 400	5 000	Excellent	A,G,ST
BLASTEX PLUS	1,26	2 à 8	800	1 010	16 100	4 900	Excellent	A,G,ST
BLASTGEL® 1000	1,22	4 à 7	650	800	19 000	5 800	Excellent	A,G
BLASTGEL® 1070	1,27	4 à 7	730	935	18 000	5 500	Excellent	A,G
ANFO								
ANTU								

720

748

12 800

11 350

775

890

0.82 sac de 50 lb 880

0,87 sac de 50 lb 880

Puissance volumique (PV) et Puissance massique (PM) peuvent être calculées en fonction de l'ANFO = 1,00 @ densité de 0.82 g/cc Énergie cal/g = Puissance volumétrique absolue (PVA) Énergie cal/cc = Puissance au mortier balistique (PMB)

Explosifs empaquetés

Allioi Ces III	ouie	53 1	liojan					
	Poids gramme	Poids oz	Diamètre x Longueur pouces	Densité g/cc	Vélocité pi/sec	Vélocité m/sec	Détonation Pression kbars	Eau Résistance
Spartan®	90g	3,2	1,1 x 4,7	1,65	24 000	7 300	220	Excellent
	150g	5,5	1,5 x 4,7	1,65	24 000	7 300	220	Excellent
	200g	7	1,6 x 4,6	1,65	24 000	7 300	220	Excellent
	350g	12	2,0 x 4,7	1,65	24 000	7 300	220	Excellent
	400g	14	2,1 x 4,7	1,65	24 000	7 300	220	Excellent
	450g	16	2,2 x 4,7	1,65	24 000	7 300	220	Excellent
	900g	32	3,1 x 5,6	1,65	24 000	7 300	220	Excellent
Spartan® SR	350g	12	2,0 x 4,7	1,65	24 800	7 550	235	Excellent
	400g	14	2,2 x 4,7	1,65	24 800	7 550	235	Excellent
	450g	16	2,3 x 4,7	1,65	24 800	7 550	235	Excellent

2,0 x 4,7

2,3 x 4,7

3,1 x 5,1

12

16

32

450g

900g

Spartan® SL Slider 24 000 16 7 300 220 450g 2,2 x 4,7 1,65 Excellent Spartan® Twinplex 450g 16 2,2 x 4,6 1,60 25 600 7 800 245 Excellent SuperPrime® Stinger 10g 0,353 0,75 x 2,1 1,60 25 600 7 800 245 Excellent 0,65 x 3,5 20g 0,705 1,60 25 600 7 800 245 Excellent

1,60

1,60

1,60

7 800

7 800

7 800

245

245

245

Excellent

Excellent

Excellent

25 600

25 600

25 600

Cordeau détonant

SuperPrime® NBU 350g

Coraeau ae	tor	iant						Jacket
	Charge g/m	interne gr/pi	Traction (i	mnimale) lb		pplication Presplit Trunkline	Couleur / Compteur Couleur / Rayure	T= Tissu P = Plastique
PRIMACORD® 1	1,5	7,5	68	150	✓		jaune / 5 noir	T
PRIMACORD 2.5	2,4	12	27	60	✓	✓	orange / 4 noir	T
PRIMACORD 3	3,2	15	113	250	✓		rouge / 1 noir + 1 bland	с Т
PRIMACORD 4Y	3,6	18	68	150	✓	✓	jaune / 1 noir	Т
PRIMACORD 4R	3,6	18	68	150	✓	✓	rougee	Т
PRIMACORD 5	5,3	25	68	150	✓	✓	rougee / 1 noir	T
PRIMACORD 8	8,5	40	90	200	✓	✓	rougee / 2 noir	Т
PRIMACORD 10	10,8	50	90	200	✓	✓	jaune / 2 noir	T
PRIMALINE® 4D	3,6	18	45	100		✓	rose	Р
PRIMALINE 5	5,3	25	50	110		✓	orange/revêtement cire	éΡ
PRIMALINE 8D	8,5	40	45	100		✓	jaune	Р
PRIMALINE 21	21,3	100	79	175		✓ ✓	transparent	Р
PRIMALINE 31	31,5	150	90	200		✓ ✓	transparent	Р
PRIMALINE 42	42,5	200	90	200		✓ ✓	transparent	Р
PRIMALINE 85	85,0	400	136	300		✓ ✓	vert pâle	Р
PRIMASHEAR® 4	3,6	18	23	50		✓	transparent	Р
PRIMASHEAR 5	5,3	25	45	100		✓	transparent	Р
PRIMASHEAR 8	8,6	40	50	110		✓	transparent	Р
PRIMASHEAR 8C	8,6	40	50	110		✓	jaune	Р

PRIMALINE SMS est un cordeau détonant vert de 0,9 g/m (4 gr/pi) qui s'autoconsomme, branché à un détonateur de haute puissance. Disponible en périodes de 18 délais entre 0 et 3 800 ms.

^{*} Il se peut que les fils dérivés du cordeau détonant ait une incidence négative sur les explosifs dans le trou de mine. Veuillez consulter votre représentant Dyno Nobel.

Spartan, Spartan SL Slider, Spartan Twinplex et SuperPrime Stingers sont sensibles aux détonateurs et ont une énergie nominale de 1 370 cal/g et 2 190 cal/cc.

Les amorces SuperPrime NBU sont sensibles aux cordeaux détonants (18 gr/fpi et supérieur), et ont une énergie nominale de 1 880 cal/g et 3 120 cal/cc.

Systèmes d'initiation électronique de Dyno Nobel

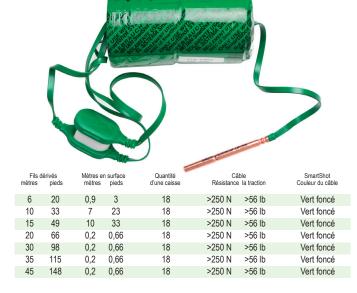
Propriétés de DigiShot®

- Tir filé
- Connecteur à 2 fils
 Jusqu'à 300 détonateurs par sautage

- Entièrement programmable avec autoprogrammation
 Délais entre 0 et 20 000 ms en incréments de 1 ms
 Exige un mot de passe, un signal codé et un blast key pour effectuer le tir

Propriétés de DigiShot® Plus

- Tir filé ou sans fil, à distance
- Connecteur à 2 fils
 Jusqu'à 1800 détonateurs par sautage
- Entièrement programmable avec autoprogrammation
 Délais entre 0 et 20 000 ms en incréments de 1 ms
 Exige un mot de passe, un signal codé et un blast key pour effectuer le tir


Longueu mètres	ır du fil pieds	Quantité d'une caisse		e la traction câble	DigiShot Couleur du câble	DigiShot Plus Couleur du câble
2**	6.5	90	374 N	84 lbs	Rouge	Vert
9	30	84	374 N	84 lbs	Rouge	Vert
15	50	60	374 N	84 lbs	Rouge	Vert
18	60	50	374 N	84 lbs	Rouge	Vert
24	80	40	374 N	84 lbs	Rouge	Vert
30	100	32	374 N	84 lbs	Rouge	Vert
37	120	24	374 N	84 lbs	Rouge	Vert
46	150	24	374 N	84 lbs	Rouge	Vert
55	180	18	374 N	84 lbs	Rouge	Vert
75	245	18	374 N	84 lbs	Rouge	Vert

^{*} jusqu'à 3,5 km de ligne de visée. ** les unités de 2 m sont fabriqués avec un raccord en bloc.

D'autres configurations de longueur sont disponibles. Veuillez consulter votre représentant Dyno Nobel pour plus de précisions.

Propriétés du SmartShot™

- Tir à distance filé ou sans fil (jusqu'à 3,5 km de ligne de visée)
- · Tir à distance sous terrain par câble rayonnant
- Connecteur à 4 fils en série
- Jusqu'à 2 400 détonateurs par Blaster (tout dépendant du plan de tir)
- Entièrement programmable avec autoprogrammation
- Délais entre 0 et 20 000 ms en incréments de 1 ms
- Exige un mot de passe, un signal codé et un blast key pour effectuer le tir

SmarShot est offert en d'autres configurations de longueur. Veuillez communiquer avec le représentant de Dyno Nobel pour plus de précisions.

DigiShot®, DigiShot® Plus, and SmartShot™ sont des marques de commerce enregistrées de DetNet South Africa (Proprietary) Limited

Electric Super™ Seismic
Un détonateur de pleine puissance conçu pour
initier des explosifs sismiques utilisés dans le cadre
d'explorations géophysiques.

	-171
Délai	Couleur du fil de connexion
Instantané	Fil de cuivre
	(simple) Jaune et jaune
	(duplex) Jaune

Electric Super™ Starter

Un détonateur électrique instantané qui se trouve à l'intérieur d'un bloc fermé en plastique, facilitant ainsi la connexion à la fois au tube de choc et au cordeau détonant.

Délai	Couleur du fil de connexion
Instantané	Fil de cuivre (simple) jaune et turquoise

Electric Super™ Coal
Conçu pour satisfaire les exigences MSHA dans les
activités d'extraction charbonnières souterraines. Temps de tir normal

Périodes	de la série charbor (m/sec)	connexion
1	25	blanc et blanc
2	100	rose et rose
3	175	bleu pâle et bleu pâle
4	250	orange et orange
5	325	blanc et vert foncé
6	400	or et or
7	500	rougo of rougo

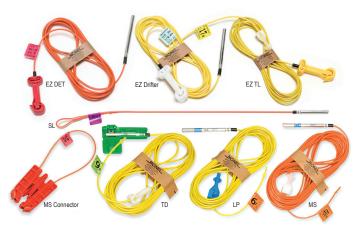
8	600	vert pâle et vert pâle
9	700	bleu pâle et blanc
10	800	rose et orange
11	900	bleu pâle et orange
12	1,000	bleu pâle et rose

Electric Super™

La série SP comporte 26 «courtes périodes » précises délais en millisecondes. La série LP comporte 19 «longues périodes».

Délai Périodes	Temps de tir normal de la série SP (m/sec)	Temps de tir norma de la série LP (m/sec)
٥	5	(III/Sec)
0	25	25
1		
2	50	200
3	75	400
4	100	600
5	125	800
6	150	1 000
7	175	1 200
8	200	1 400
9	225	1 600
10	250	1 900
11	275	2 200
12	300	2 500
13	325	2 900
14	350	3 300
15	375	3 800
16	400	4 400
17	425	5 100
18	450	-
19	475	-
20	500	-
22	550	-
24	600	
26	650	_
28	700	
20	700	-

Couleur du fil de connexion – Séries SP et LP : Fil de cuivre SP (simple) = jaune et turquoise Fil de cuivre SP (duplex) = turquoise Fer cuivré SP (simple) = orange et orange


Fil de cuivre LP (simple) = rouge et jaune

750

30

Rés	istar	ice no	omin	ale (ohms)
Lon	onnexion gueur (mètres)	Electric Super SP et LP	Electric Super Coal	Electric Super Seismic	Electric Super Starter
8	2,4	-	-	-	-
12	3,6	1,92	-	1,20	1,92
14	4,2	-	4.30	-	-
16	4,8	2,03	-	-	-
20	6,1	2,14	-	-	-
24	7,3	2,25	-	1,40	-
30	9,1	2,40	-	-	-
35	10,7	-	-	1,65	-
40	12,2	2,66	-	-	-
45	13,7	-	-	1,85	-
55	16,8	-	-	2,05	-
60	18,3	3,19	-	-	-
65	19,8	-	-	2,25	-
75	22,8	-	-	2,50	-
85	25,9	3,85	-	2,70	-
100	30,2	-	-	3,00	-
120	36,6	-	-	3,40	-
160	48,8	-	-	4,25	-

Fil de cuivre	(onms)	
Calibre moyen pour fil	1000 pi	
12	1,59	
14	2,52	
16	4,02	
18	6,38	
20	10,15	
21	13,26	
22	16,14	
23	21,09	
24	25,67	

NONEL® EZ DET®
Les unités EZ DET sont composées d'un détonateur de délai dans le trou précis et d'un détonateur de délai de surface qui se trouve à l'intérieur d'un bloc de plastique EZ Connector/MC fermé et reilé par une longueur.

Temps nominal (msec)	Temps nominal (msec)	Temps nominal (msec)	EZ Connecteur Couleur
17 / 350	17 / 500	17 / 700	Jaune
25 / 350	25 / 500	25 / 700	Rouge
42 / 350	42 / 500	42 / 700	Blanc
25 / 375			Rouge

NONEL® EZTL™

Les détonateurs de fils dérivés de délai EZTL comportent une longueur d'un tube de chocs jaune fixé à détonateur de faible puissance de délai en millisecondes enfermé dans un EZ de plastique Bloc du connecteur à une extrémité et scellé par un crochet de plastique en J fixé à l'autre extrémité.

crochet de plastique en J fixe à l'autre extremite.					
Temps nominal (msec)	EZ Connecteur Couleur		Temps nominal (msec)	EZ Connecteur Couleur	
9	Vert		42	Blanc	
17	Jaune		67	Bleu	
25	Rouge		100	Noir	
33	Vert		109	Noir	

NONEL® MS

Les unités MS (millisecondes) comportent un détonateur de dél de millisecondes précis relié à une longueur d'un tube de chocs par un crochet en J en plastique blanc.

Temps nominal (msec)	Étiquette Couleur	Temps nominal (msec)	Étiquette Couleur
0	Orange	325	Blanc
25	Rouge	350	Vert
50	Marron clair	375	Blanc
75	Vert	400	Bleu
100	Bleu	425	Blanc
125	Orange	450	Orange
150	Muave	475	Blanc
175	Gris	500	Muave
200	Bleu pâle	525	Blanc
225	Blanc	600	Gris
250	Rouge	700	Bleu pâle
275	Blanc	800	Rouge
300	Marron clair	900	Marron clair
		1 000	Vert

NONEL® EZ DRIFTER®

Les unités EZ DRIFTER comportent un détonateur de 200 ms hors trou enfermé dans un bloc de connexion EZ de plastique blanc à une exférmité et une longueur d'un tube de chocs) jaune avec un détonateur à l'intérieur du trou de 5400 ms à l'autre extrémité.

Temps nominal (msec)	Couleur du connecteur EZ
200 / 5400	Blanc
NONEL® LP	

Les unités LP non électriques de longues périodes de délai comportent un détonateur de délai de millisecondes précis relié à une longueur d'un tube de chocs jaune avec crochet en J en plastique blanc à l'autre extrémité.

Déla Périod		Temps nominal (msec)	F	Délai Période	Couleur de l'étiquette du délai	Temps nominal (msec)
0	Rose	0		10	Vert	3500
1	Blanc	500		11	Jaune	3900
2	Bleu	800		12	Rouge	4400
3	Orange	1100		13	Blanc	4900
4	Vert	1400		14	Bleu	5400
5	Jaune	1700		15	Orange	5900
6	Rouge	2000		16	Vert	6500
7	Blanc	2300		17	Jaune	7200
8	Bleu	2700		18	Rouge	8000
9	Orange	3100			· ·	

NONEL® SL

Les unités SL non électriques à câble court de délai en mil-lisecondes comportent un détonateur de délai en millisecon précis liés à une longueur de 30 pouces (76 cm) d'un tube d chocs orange scellé avec une extrémité en boucle.

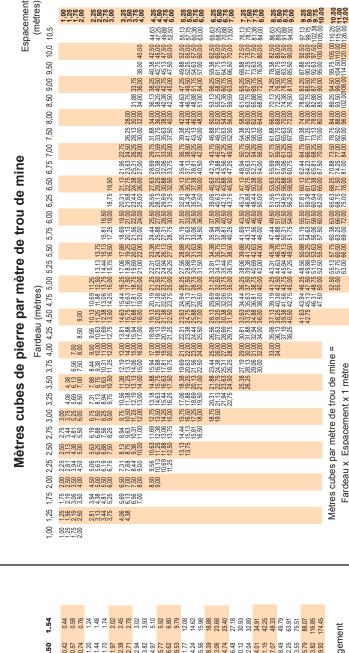
T	emps nomir (msec)	ial Étiquette Couleur	Т	emps nomin (msec)	al Étiquette Couleur
	0	Orange		325	Blanc
	25	Rouge		350	Vert
	50	Marron clair		375	Blanc
	75	Vert		400	Bleu
	100	Bleu		425	Blanc
	125	Orange		450	Orange
	150	Mauve		475	Blanc
	175	Gris		500	Mauve
	200	Bleu pâle		525	Blanc
	225	Blanc		600	Gris
	250	Rouge		700	Bleu pâle
	275	275 White		800	Rouge
	300	Marron clair		900	Marron clair
				1.000	Vert

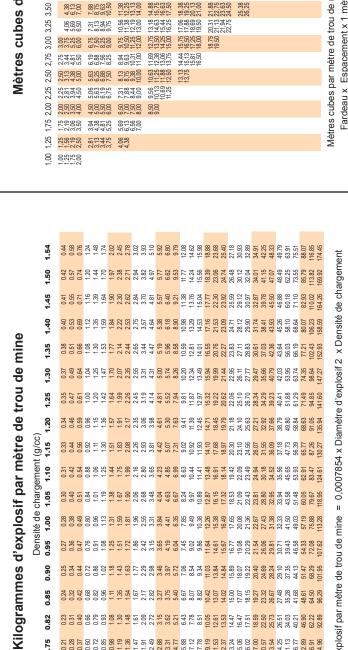
NONEL® TD

Les détonateurs de fils dérivés de délai non électriques TD comporte un détonateur de délai précis de surface enfermé dans un bloc fermé de plastique fixé à une longueur scellée d'un tube de chocs avec un crochet en J en plastique blanc. à l'autre extrémité.

Temps nominal (msec)	Couleur du bloc de connexion	Temps nominal (msec)	Couleur du bloc de connexion
9	Vert	42	Blanc
17	Jaune	67	Bleu
25	Rouge	100	Noir
33	Vert	109	Noir

NONEL® MS Connector


Les connecteurs MS non électriques bidirectionnels comportent un longueur de 18 pouces (46 cm) d'un tube de chocs avec des détonateurs à délai en millisecondes du même délai, à l'intérieur de blocs de connexion à chaque extrémité.


Temps nominal (msec)	Connecteur MS Couleur du bloc	
9	Vert	
17	Jaune	
25	Rouge	
35	Noir	
42	Blanc	
50	Orange	
65	Muave	
67	Bleu	
109	Noir	

Starter & Lead Line

Le Starter Nonel [®] est une bobine de tube de chocs qui est assemblé à l'usine à un détonateur non électrique. Offert en longueurs de 200, 500 et 1 000 pieds.
La conduite d'amenée NONELMD est une longueur embobinée de 2500 pieds de tube de chocs sans détonateur. Lorsqu'il est initié, le tube de chocs propage un signal de faible énergie vers le détonateur à un taux de 6 500 pi/seconde.

0.027 0.036 0.037

0.026 0.0434 0.0737 0.0

0.024 0.030 0.080

0.027 0.088 0.098

0.014 0.026 0.036

0.075
0.087
1.28
0.088
1.1.38
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50
1.1.50

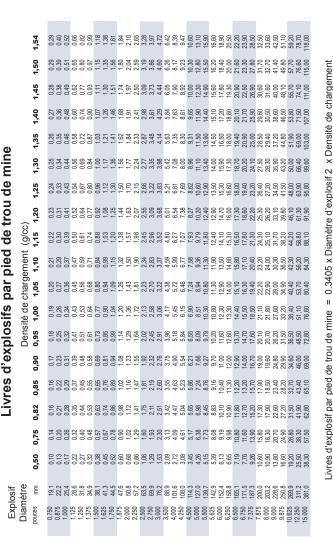
1.10

1.05

<u>0</u>

0.95

0.90


0.85

0.82 0.75

0.50

pouces Diamètre E

de mine trou g Kilogrammes d'explosif par mètre

Matériel	Spécifique Gravité	Poids Lb / pied cube	Poids Tonnes / verge cube	Pourcentage de gonflement	Gonflemen Facteur	t Poids libre Tonnes / verge cube
Cendres, houille, ordinaire	0,64 - 0,72	40 - 45	0,539 - 0,607	8	0,93	0,501 - 0,564
Basalte	2,8 - 3,0	175 - 187	2,359 - 2,527	-	-	-
Bauxite	1.6 - 2,5	100 - 156	1,348 - 2,106	33	0,75	1,011 - 1,580
Argile, dense, mouillée	1,7	106	1,432	33	0,75	1,074
Charbon, anthracite	1,3	81	1,095	35	0,74	0,810
Charbon bitumineux	1,1	69	0,927	35	0,74	0,686
Cuivre Minerai	2,0	125	1,685	35	0,74	1,247
Diabase	2,6 - 3,0	162 - 187	2,190 - 2,527	-	-	-
Diorite	2,8 - 3,0	175 - 187	2,359 - 2,527	-	-	-
Dolomite	2,8 - 2,9	175 - 181	2,359 - 2,443	-	-	-
Terre, sèche	1,6	100	1,348	25	0,8	1,078
Terre, mouillée	2,0	125	1,685	25	0,8	1,348
Terre, avec sable et gravier	r 1,8	112	1,516	18	0,85	1,289
Terre et mélange de pierres	1,4 - 1,7	87 - 106	1,179 - 1,432	30	0,77	0,908 - 1,103
Gneiss	2,6 - 2,9	162 - 181	2,190 - 2,443	-	-	-
Granite	2,7	169	2,274	65	0,62	1,410
Gravier, sec	1,9	119	1,601	12	0,89	1,424
Gravier, mouillé	2,1	131	1,769	14	0,88	1,557
Gypse	2,3 - 3,3	144 - 206	1,938 - 2,780	-	-	-
Minerai de fer, hématite	4,5 - 5,3	281 - 331	3,791 - 4,465	-	-	-
Minerai de fer, limonite	3,6 - 4,0	225 - 250	3,033 - 3,370	-	-	-
Minerai de fer, magnétite	4,9 - 5,2	306 - 325	4,128 - 4,380	-	-	-
Minerai de plomb, galène	7,5	468	6,318	-	-	-
Calcaire de Floride	2,5	155	2,089	15	0,65	1,358
Calcaire, abattu	2,6	162	2,190	71	0,60	1,314
Calcaire, marbre	2,7	169	2,274	71	0,60	1,365
Loam	1,6	100	1,348	20	0,83	1,119
Mica, schiste	2,5 - 2,9	156 - 181	2,106 - 2,443		-	-
Roche phosphatée	3,2	200	2,696	-	-	-
Quartzite	2,0 - 2,8	125 - 175	1,685 - 2,359		-	-
Roche, dure, bien abattue	2,4	150	2,022	50	0,67	1,355
Roche et pierre, broyées	1,9 - 2,1	119 - 131	1,601 - 1,769		0,74	1,184 - 1,309
Sel, roche	2,1 - 2,6	131 - 162	1,769 - 2,190	-	-	-
Sable, sec	1,9	119	1,601	12	0,89	1,424
Sable, mouillé	2,2	137	1,853	-	-	-
Grès	2,5	156	2,106	50	0,79	1,664
Schiste, enrochement	2,4 - 2,8	150 - 175	2,022 - 2,359		0,75	1,516 - 1,769
Ardoise	2,7 - 2,8	169 - 175	2,274 - 2,359		0,77	1,751 - 1,816
Talc	2,6 - 2,8	162 - 175	2,190 - 2,359		0,67	1,467 - 1,580
Roche trappéenne	3,0	187	2,527	-	-	-

Poids de divers matériaux solides

Cette	unité →	Multipliée	par	\rightarrow	Égale

Cette unite	wuitipliee pai	Lyaic

m (mètres)	39.37	ро
m (mètres)	3.281	pi
mm (millimètres)	0.001	m
mm (millimètres)	39.37	mils
cm (centimètres)	0.3937	ро
po (pouces)	25.40	mm
pi (pieds)	0.305	m
mi (milles terrestres)	1609	m
mi (milles terrestres)	5280	pi
nm (milles marins)	1.15	mi
km (kilomètres)	0.62	mi

Longueur

voiume		
cm3 (cc) (cm cubes)	0.061	in ³
po ³ (pouces cubes)	16.39	CC
m3 (mètres cubes)	1.31	v^3
pi ³ (pieds cubes)	0.028	m^3
v3 (verges cubes)	0.7646	m^3
Gallon impérial	3.785	liter
Gallon impérial	0.1337	pi ³
Onces impériales liquid	es 29.57	CC

Densité

lb / pi cu (livre / pi ³)	16	kg / m ³
lb / pi cu (livre / pi ³)	0.01602	g / cm ³
g/cc (gramme/cm ³)	62.43	lb / pi ³
g/cc	0.8428	tonnes / v

Énergie

joule calories kilowatt	0.24 4.184 1.34	calories joule puissance de cheval

Température

°F (degrés Fahrenheit)	-32° x 0.556	°C
°C (degrés Celcius)	x 1.8 + 32°	٩F

Cette unité \longrightarrow Multipliée par \longrightarrow Égale

Masse / Poids			
kg (kilogrammes)	2.2	lb	
grains	0.0648	g	
grains	0.000143	lb	
g (grammes)	15.43	grains	
oz (onces)	28.35	g	
lb (livres)	0.4536	kg	
tonne	1 1023	tonne courte	

lacteui	ue pouure	
lb / v ³ kg / m ³	0.593 1.686	kg / m^3 lb / v^3

Facteur de charge

lb/pi	1.4882	kg / m
g / m (grammes / mètres)	4.7	grains / p
grains / pi	0.212	g / m

Vitesse / Vélocité / Taux

m / s (mètres / sec)	3.281	pi/s
pi / s (pied / sec)	0.3048	m/s
po / s (pouce / sec)	2.54	cm/s
km / heure	0.62	milles / h

Pression

psi (livres / po²)	0.0703	kg / cm²
atm (atmosphères)	14.696	psi
un pi de H ₂ O @ 15°C	0.4335	psi
KBar	14,504	psi
KBar	10 ⁵	kPa
KBar	10 ⁵	kPa

Aire

cm2 (cm carré)	0.155	po ²
m ² (mètre carré)	1550	po ²
po ² (pouce carré)	6.45	cm ²
pi ² (pied carré)	0.0929	m ²
acre	43560	pi ²
mille carré	640	acre

Égale ← Divisé par ← Cette unité

Terminologie de plans de tir В € C Ε CRÊTE NOUVEAU (APRÈS DEBLAYAGE) R н ı Ń Crête M Hauteur de colonne explosive

Du trou à la crête В

Mort-terrain apparent

Espacement apparent* D Diamètre du trou

Hors-profil Е

F Faille latérale G H

L

Mort-terrain de crête Angle du front de taille I

Front Hauteur du gradin Profondeur du trou K

Surforation Ν Ρ

Mort-terrain du front Hauteur du bourrage O

R Collet

Definitions

dmissible Des explosifs dont l'utilis es gazeus es et pou

Admissible Des explosies uoni l'unisation dans des annospheres gazenses et poussiereuses, nautuenement souter raines, a été approuvée.

Agent de dynamitage Un mélange destiné au dynamitage qui ne peut être détoné à l'aide d'un détonateur no 8 s'il n'est pas confine, et comporte très peu de probabilité de détonation dans des conditions de transport normali Amorce Une charge explosive de la séquence d'initiation entre l'initiateur et la charge principale

Amorce Une unité explosive renfermant un détonateur utilisé pour initialisé d'autres explosifs uillie explosive Une solution aqueuse oxydante épaissie (et possiblem

des carburants dissous et/ou dispersés, qui est sensibilisée par des vides d'air ou des additifs de sensibilisation.

Bourrage Matière inerte (pierres broyées) utilisée pour confiner les gaz générés pendant la détonation.

Boutefeu principal Le boutefeu en charge et responsable du plan de tir, du chargement des trous et du dynan sur un chantier en particulier.

La distance entre un trou de mine et l'emplacement du front de dégagement de plus près au mo-Charge efficace ment de la défonation du trou de mine, en tenant compte de la direction de l'initiation.

Coefficient de foisonnement Le rapport entre le volume de roche abattue et le volume de roche in situ.

Coupure Une rupture de la détonation ou de l'initiation causée par une entrave extérieure.

Culot Le fond d'un trou de mine qui reste lorsque l'explosion ne concasse pas entièrement la pierre.

Date-Shift Code Un code requis par la BATF, que doit comporter les emballages d'explosifs pour aider à les identifier.

Découplage L'utilisation d'explosifs dont le volume est plus petit que le volume du trou de mine.

Déflagration Une réaction explosire qui se déplace à une vélocité moins grande que la vitesse du son.

ensité La masse d'un explosif par unité de volume, habituellement exprimée en g/cc ou lb/pi3. ur électrique Un détonateur qui est initialisé par un courant électrique

e Un détonateur qui utilise de l'énergie électrique stockée pour alimenter un éle chronométrage électronique et pour tirer la charge de base.

Détonateur non électrique Un détonateur qui ne nécessite pas l'usage d'une énergie électrique pour fonctionner. Détonation Une réaction explosive qui se déplace à une vélocité plus grande que la vitesse du son.

Détonation à retardement L'utilisation de descriptions d'une période de temps définie.

Diamètre critique Le diamètre minimal de propagation d'une détonation stable.

Distance échelonnée Un facteur relatif aux effets de dynamitage provenant de charges explosives à différentes distances

Le temps de conservation maximale d'un produit explosif pendant lequel il conserve une

Émanations Le produit gazeux résultant d'une explosion. Pour déterminer la classification des émanations des

Émulsion explosives, seulis les gaz toxiques sont pris en compte.

Émulsion explosive La dispersion stabilisée de gouttelettes d'une solution aqueuse oxydante (la phase interne) entourée d'une phase externe continue d'huile et/ou de cire, qui est sensibilisée par des vides d'air ou des agents de ensibilisation

Émulsion repompabl le Une émulsion de vrac préfabriquée d'une durée de conservation et de fluidité suffisante pour

Étre pompée, en fonction de pressions raisonnables, à travers un tuyau, sans nuire à la performance.

Énergie RF L'énergie rayonnée sous forme d'ondes électromagnétiques dans le spectre des radiofréquences.

Espacement efficace La dimension linéaire entre des trous de mine en détonation successive, en tenant compte de la direction de l'initiation

Explosif se ensible aux détonateurs Un explosif qui est amorcé par un détonateur no 8 lorsqu'il n'est pas confiné Synonyme d'explosif sensible aux amorces.

Front de dégagement Une surface de pierre qui fournit à la pierre l'espace nécessaire pour prendre de l'expansion lorsqu'elle est dynamitée.

Un front presque vertical sur le bord d'un gradin, d'une falaise ou d'une saillie d'une excavation de surface. Haut mur Hors-profil Roche brisée au-delà des limites de la dernière rangée de trous de mine. Synonyme de surbattage. Initiation Le début de la déflagration ou de la détonation d'un explosif par tous les moyens possibles.

Jet d'air L'onde de choc aérienne ou perturbation acoustique généré par une explosion.

Mort-terrain La dimension linéaire entre le trou de mine et le front de dégagement le plus près

Prédécoupé In dynamitage contrôlé dans lequel des charges découplées sont tirées dans des trous de mine du périmètre d'une excavation avant la mise à feu de la charge principale afin de prévenir un hors-profil (surbattage).

Pression de détonation La pression produite dans la zone de réaction d'un explosif détonant.

Pression du trou de mine La pression exercée par les gaz de détonation sur les parois du trou de mine.

Projections de pierre Des roches projetées de la zone de dynamitage par la force d'une explosion.

Puissance massique (PM) L'énergie par unité de volume d'un explosif comparé à l'ANFO lorsque l'ANFO = 1,00 à l'aux densité de 0.92 a/ce.

e densité de 0,82 g/d Puissance voumique (PV) L'énergie par unité de masse d'un explosif comparé à l'ANFO lorsque l'ANFO = 1,00 à

une densité de 0,82 g/cc. Raté Une explosion, une ch rge explosive ou des trous de mine précis n'ayant pas détoné tel que prévi

Registre de dynamitage Les détails relatifs à un dynamitage précis, tel que peut l'exiger la loi.

Retard d'allumage La détonation d'une charge explosive quelque temps après le moment attendu du tir.

Sensibilité aux écarts L'écart qu'une détonation doit traversée pour initialiser une deuxième charge.

Shunt La protection des extrémités libres des fils de détonateurs électriques ou d'un circuit de dynamitage Site de dynamitage L'endroit où du matériel de dynamitage est manipulé pendant le chargement y compris 50 pieds dans toutes les directions à partir du périmètre formé par les trous de tir chargé nt des trous de mine.

Sondage pré-dynamitage Travail de documentation de l'état des structures à proximité d'une zone qui doit être dynamitée Surbattage Roche brisée au-delà des limites de la dernière rangée de trous. Synonyme de hors-profil. Vélocité de détonation La vitesse à laquelle une détonation voyage dans un explosif.

Vélocité en régime permanent La vélocité finale de la détonation atteinte par un explosif précis en fonction d'un diamètre, d'une densité et d'un degré de confinement précis. Vibration du sol Agitation du sol par ondes élastiques provenant d'un dynamitage, et habituellement me

pouces par seconde de vélocité des particules Zone de dynamitage L'aire du dynamitage dans la zone d'influence de projections de roche, de gaz et de chocs d'explosion.

Vibration de sol prévue

Lorsqu'un explosif est amorcé dans le sol, trois types d'ondes sismiques sont générées : de compression, transversales et de surface. Ces ondes peuvent entraîner une réaction des structures et, en de rares occasions, des dommages structuraux. Des recherches exhaustives ont permis d'établir des critères de sécurité fondés sur la vitesse de crête d'une particule mesurée à partir des ondes. Les valeurs de la vitesse de crête d'une particule (VCP) peuvent être estimées à l'aide des formules suivantes :

$$VCP = \left(\frac{\sqrt{\text{livres par délai}}}{\frac{\text{pieds jusqu'au}}{\text{sismographe}}}\right)^{1.6} \times H$$

Où:

VCP=Vitesse de crête d'une particule (po/sec) H = Facteur de réaction du sol

i acieurs wi

Limite faible, peu ou aucun confinement 24,2
Valeur moyenne, confinement type 160
Limite élevée, confinement important 242

$VCP = \left(\frac{\sqrt{\text{kilogrammes par délai}}}{\text{mètres jusqu'au}}\right)^{1.6} \times H$

Οù

VCP=Vitesse de crête d'une particule (mm/sec) H = Facteur de réaction du sol

Facteurs «H»

Limite faible, peu ou aucun confinement 172

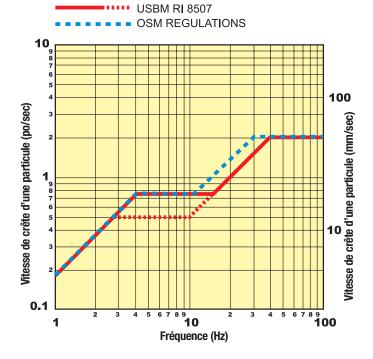
Valeur moyenne, confinement type 1140

Limite élevée, confinement important 1725

Distance échelonnée

$$D_S = \frac{D}{\sqrt{P}}$$

$$D = D_S \times \sqrt{P}$$


$$P = (\frac{D}{D_S})^2$$
Dù $D_S = D$ istance échelonnée

Où D_S = Distance échelonnée D = Distance (pi) par rapport à la structure la plus près P = Poids des explosifs (lb) maximum par délai

Le tableau ci-contre fournit les livres maximale des explosifs qui peuvent être détonés à l'intérieur d'un délai de 8 millisecondes de distances données, sans surveillance, selon les recommandations du Office of Surface Mining (OSM).

Distance	DS = 50 (0 à 300 pi)	DS = 55 (301 à 5 000 pi)	DS = 65 (5 001 pi+)
25 50 75 100	0.25 1.00 2.25 4.00		
150 200 250 300	9.00 16.00 25.00 36.00		
301 350 400 500		29 40 52 82	
600 700 800 900		119 161 211 267	
1,000 2,000 3,000 4,000 5,000		330 1,322 2,975 5,289 8,264	
5,001 6,000 10,000		3,201	5,919 8,520 23,668

Critères de dynamitage de niveau sécuritaire

Calculs pour trous mouillés

1. Pour déterminer la hauteur finale de l'eau dans le trou de mine lorsque le haut de la dernière cartouche se trouve au niveau de l'eau

$$HF = \frac{H_0 \times D_{T}^2}{D_{T}^2 - D_{E}^2}$$

HF = Hauteur finale de l'eau, en pieds

 $H_{O}\,$ = Hauteur originale de l'eau, en pieds $D_{T}\,$ = Diamètre du trou de mine, en pouces

D_T = Diametre du trou de mine, en pouces
D_E = Diamètre du paquet d'explosif, en pouces

 Pour déterminer le nombre de cartouches requises pour remplir le trou de façon à surpasser l'eau qui s'y trouve.

$$N_C = \frac{HF \times 12}{I}$$

N_C = Nombre de cartouches nécessaires FH =Hauteur finale de l'eau (de l'équation 1)

L_C = Longueur de la cartouche, en pouces

